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Abstract. Nitrogen and water availability are two of staple environmental elements in agroecosystems that can substantially 10 

alter canopy structure and physiology then crop growth, yielding large impacts on ecosystem regulating/production 

provisions. However, to date, explicitly quantifying such impacts remains challenging partially due to lack of adequate 

methodology to capture spatial dimensions of ecosystem changes associated with nitrogen and water effects. A data 

assimilation, where close-range remote sensing measurements of vegetation indices derived from a hand-held instrument and 

an unmanned aerial vehicle (UAV) system are linked to leaf and canopy photosynthetic traits quantified at plot level by 15 

portable chamber systems, was applied to capture and interpret inter- and intra-field variations in gross primary productivity 

(GPP) in lowland rice grown under flooded condition (paddy rice, PD) subject to three available nutrient availability and 

under rainfed condition (RF) in East-Asian monsoon region, South Korea. Spatial variations (SVs) in both GPP and light use 

efficiency (LUEcabs) early in growing season were amplified by nitrogen addition, and such nutritional effects narrowed over 

time. Shift planting culture from flooded to rainfed conditions strengthened SVs in GPP and LUEcabs. Intervention of 20 

prolonged drought event at late growing season dramatically intensified their SVs that are supposed to seasonally decrease. 

Nevertheless, nitrogen addition effects on SV of LUEcabs at early growth stage made PD field exert greater SVs than RF field. 

SV of GPP across PD and RF rice were likely related to LAI development less to LUEcabs while, numerical analysis 

suggested that consider spatial variation and strength in LUEcabs for the same crop type tends to be vital for better evaluation 

in landscape/regional patterns of ecosystem photosynthetic productivity at critical phenology stages.   25 
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1 Introduction 

Agricultural landscape in most Asia monsoon regions is featured by multicultural cropping systems comprising of relatively 

small land holdings under 2 ha (Devendra, 2007). Changes in phenology of those crop ecosystems where rice makes up 30 

larger portion and exerts a rapid completion of life cycle in a short period of time with markedly changes in canopy 
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dynamics are of significant importance in regional controls of carbon balance and biogeochemical processes (Kwon et al., 

2010; Lindner et al., 2015; Xue et al., 2017), tending to be one of drivers causing seasonal fluctuations of atmospheric CO2 

concentration in north hemisphere (Forkel et al., 2016). Hence, to better understand their ecological implications under 

current climate and environmental changes, one of main concerns lies in spatiotemporal aspects of ecosystem photosynthetic 

productivity in the staple crop subject to different methods of field management and anthropogenic interventions, and 5 

underlying physiological mechanisms that are responsible for such spatiotemporal dimensions. 

The stability, repeat measurement capability, and landscape to global coverage of remote sensing from satellites have 

triggered widespread use of such measurements to obtain spatial patterns of biophysical and biochemical variables in studies 

of land surface and atmospheric process (Richardson et al., 2013). Recent study introducing satellite products as input 

parameters in flux modelling campaigns carried out in small size of crop land reported that prediction accuracy seems to be 10 

pixel-size dependent (Adiku et al., 2006), yielding better prediction if apply satellite products at finer resolution. Accordingly, 

attempts made to assimilate those parameters into process-based crop growth models that led to noticeable overestimations 

and/or underestimations in plant functional traits over a whole growing season have been increasingly concerned (Tenhunen 

et al., 2009; Lee, 2014; Alton, 2017). Satellite images collected during plant growing seasons have been used to monitor crop 

growth and to predict yield production, but their use has been limited by poor revisit times, coarse spatial resolution, and/or 15 

cloudy weather. They technically conceal delicate fluctuations of ecosystem productivity tightly associated with per-field 

ecological conditions on which plants survival and dispersal depend (Seo et al., 2014), and hence bring great spatiotemporal 

uncertainties in evaluating strength of daily carbon fluxes among micro sites of the same plant function type at principle 

growth stages. The research gaps might be mathematically resolved using complex Bayesian melding (Gelfand, 2012). 

Multi-pragmatic solutions are suggested to develop spatial/temporal data fusions that integrate spatially hierarchical remote 20 

sensing networks and in situ ground surface observations (Lausch et al., 2016; Pause et al., 2016), aiming to better monitor 

canopy dynamics and environmental impacts on them.  

Of them that help to understand per-field ecological processes, close-range remote sensing technique rises to be one 

realistically convenient measure that can timely provide us with temporal information of ecosystem dynamics at high spatial 

resolution. Recent applications in agronomy studies (Zhang and Kovacs, 2012; Ko et al., 2015; Jeong et al., 2016) refract the 25 

feasibility of resolving the research gaps in terms of capturing spatiotemporal aspects of ecosystem photosynthetic 

productivity at intra- and inter-fields. 

To well interpret spatiotemporal variations of ecosystem photosynthetic productivity captured by close-range remoter 

sensing, conventional physiological studies at canopy leaves are, nevertheless, essential (Sinclair and Horie, 1989; Niinemets 

and Tenhunen, 1997). As leaves are the small and basic units that constitute rice canopy volume, their functioning could 30 

change with canopy development and changing habitat conditions (Xue et al., 2016a, b), contributing to fluctuations in 

strength of seasonal canopy photosynthesis. 
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Traditional ecophysiology approaches are greatly limited to compare neighboring plant individuals and tend to neglect 

spatial dimensions. Landscape ecology, although resolving ecosystem functioning at broader scale, is commonly restricted to 

regional analysis at higher hierarchical level beyond individual organisms. Therefore, the central aims of this research are to 

construct a spatially integrative concept model that assimilates quantitatively abundant data sets collected from a close-range 

remote sensing system applied at field level and from traditional ecophysiology approaches at plot level, and capture and 5 

then interpret effects of different field management practices i.e. nutrient application and water treatments on temporal and 

spatial aspects of ecosystem photosynthetic productivity via their influences on canopy leaf physiology and structure, to 

evaluate the following hypothesis:  

(1) Temporal course of canopy carbon gain capacity was primarily driven by LAI development and solar radiation intensity 

at reproductive stage (Xue et al., 2016a; 2017). Nevertheless, canopy leaf physiology is one of primary factors that determine 10 

canopy light use efficiency and thereby carbon gain capacity (Sinclair and Horie, 1989). Hence, spatial variability of 

ecosystem GPP could be concurrently driven by canopy structure i.e. LAI and canopy leaf physiology i.e. LUEcabs.  

(2) Shifts of planting culture from flooded to rainfed conditions mean that water availability tends to be a primary factor 

determining ecosystem photosynthetic productivity, and then growth of rainfed rice suffers from multiple uncertainties 

regarding timing/strength of precipitation and uptake of nutrient availability in soil (Kato et al., 2016). Significant changes in 15 

leaf and root anatomies, and canopy structure and function in rainfed field could occur (Yoshida, 1981; Steudle, 2000). 

Greater variations in spatial aspects of ecosystem GPP, LAI and LUEcabs in rainfed lowland rice than flooded rice are 

therefore anticipated. 

 

2 Materials and Methods 20 

2.1 Study site 

Field campaign was carried out at the agricultural field station of Chonnam National University, Gwangju, S. Korea 

(35o10´N, 126o53´E, altitude of 33 m, Fig. 1). Mean annual air temperature and precipitation averaged over past two decades 

are approx. 13.8oC and 1400 mm yr-1. East-Asian monsoon climate is prevalent from June to October in this region during 

which time more than half of annual precipitation fall. The top layer of soil is categorized as loam with sand of 388 g kg-1, 25 

silt of 378 g kg-1, clay of 234 g kg-1, PH of 5.5, organic C content of 12.3 g kg-1, available P of 13.1 mg P2O5 kg-1, and total N 

before fertilization of 1.0 g kg-1. Thirty-day-old seedlings of a newly breeding line Oryza sativa cv. Unkwang (Kim et al., 

2006) were transplanted into flooded fields named paddy rice (PD) on May 20, 2013 (140 days of year, DOY). N:P:K with 

mass ratio of 11:5:6 was mixed to generate three fertilizer application rates: 0 kg N ha-1 (no supplementary fertilizer, plot size 

~511 m2, named low nutrient group), 115 kg N ha-1 (plot size ~1387 m2, normal nutrient group), and 180 kg N ha-1 (plot size 30 

~511 m2, high nutrient group) (Fig. 1). Nutrient treatment groups were respectively isolated by 35 cm width perimeter 

cement walls, inserted into the soil 1 m depth. 80% of total nitrogen fertilizer was applied by hand spreading two days before 
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transplanting, and the rest used at active tillering phase of vegetative stage. P fertilizer was applied as 100% basal dosage, 

and K fertilizer was applied as 65% basal dosage and 35% during tillering phase. Seeds of the same rice cultivar were 

directly sown in an adjacent upland field, being treated as rainfed rice (RF, ~64 m2) on April 22 (112 DOY). The same 

fertilizer compound with 115 kg N ha-1 as PD normal nutrient group was conducted in RF field two times, 80% before 

seeding and the rest at tillering phase. No irrigation was supplied at the RF field during the whole growing season. All field 5 

management practices conformed to local planting cultures. Life history in Unkwang rice generally aligned to a classification 

of phenology in temperate rice proposed by Yoshida (1981) that spends about 30 days in the vegetative stage after 

transplanting, 30 days in the reproductive stage, and 30 days in the ripening period. 

To better underpin physiological mechanisms that may contribute to spatial patters of per-field photosynthetic 

productivity, a pair of experiment consisting of PD and RF Unkwang rice in a controlled growth chamber at University of 10 

Bayreuth (11o34´N, 49o56´E) was deployed in September 2014. 30-day-old seedlings were transplanted into plastic 

containers (top diameter 25.4 cm and height 25 cm) with similar plant spacing as planting practice in the 2013 field 

experiment. The equivalent fertilizer 115 kg N ha-1 was applied two times in both PD and RF rice, before 

transplanting/sowing and at tillering phase. All plants were then acclimated in the growth chamber to daytime air 

temperature 30oC, relative humidity 60%, night temperature of 25oC, and light intensity of 900 µmol m-2 s-1 (35.64 MJ m-2 15 

d-1). Soil water content (SWC) in RF rice containers was maintained between 0.2 and 0.4 m3 m-3 using EC-5 soil moisture 

sensors (EC-5, Decagon, WA, USA). 

 

2.2 Field measurements of meteorological factors and soil water content 

Meteorological factors including air temperature, relative humidity, wind speed, precipitation, and global radiation were 20 

continuously measured with a 2 m height automatic weather station installed at a field margin of RF field (AWS, WS-GP1, 

Delta-T Devices Ltd., UK). Weather data were recorded every 5 min, averaged and logged half-hourly. Additionally, values 

of SWC at 10, 30 and 60 cm depth at three sites in RF field were continuously measured every 15 min using EC-5 soil 

moisture sensors. SWC data recorded by the EC-5 sensors were then calibrated by actual SWC measurements conducted in 

the laboratory with the same soil. SWC was then converted to soil water potential (ψs) with standard soil-water retention 25 

curves of Van Genuchten (1980), referred to Xue et al. (2016b).   

 

2.3 Field measurements of diurnal courses of leaf and canopy CO2 exchange  

Diurnal gas exchange and chlorophyll fluorescence measurements in fully expanded uppermost, second, third and fourth 

leaves of canopy profiles at PD high nutrient group were conducted on 57 and 73 day after transplanting (DAT) (197 and 213 30 

DOY) using a portable gas exchange and chlorophyll fluorescence system (GFS-3000 and PAM Fluorometer 3050-F, Heinz 

Walz GmbH, Effeltrich, Germany) to track ambient environmental conditions external to leaf cuvette. Repeated 

Biogeosciences Discuss., doi:10.5194/bg-2016-492, 2016
Manuscript under review for journal Biogeosciences
Published: 18 November 2016
c© Author(s) 2016. CC-BY 3.0 License.



 5 

measurements of diurnal course of leaf gas exchange were carried out in uppermost leaves in PD low nutrient group on 171, 

172, 179, 180 and 199 DOY (31, 32, 39, 40 and 59 DAT), in PD normal nutrient group on 175, 177, 195 and 211 DOY (35, 

37, 55, and 71 DAT), in PD high nutrient group on 170 and 178 DOY (30 and 38 DAT), and in RF rice on 157, 181, 201, 205, 

222, 223, 227, 231, 235 and 238 DOY. Mid parts of two or three leaves were enclosed into the leaf chamber from sunrise to 

sunset. Photosynthetic rate and momentary micrometeorological factors just above plant canopies were recorded every 5 min, 5 

and automatic calibration executed by a user-defined program was repeated every 15 min. Leaf light use efficiency based on 

incident PAR (LUEleaf) was estimated using photosynthesis data recorded at incident PAR less than 200 µmol m-2 s-1.  

Diurnal course of canopy gas exchange was conducted by a custom-built transparent chamber (L 39.5 × W 39.5 × H 

50.5 cm) used for net ecosystem gas exchange (NEE) measurement and by a opaque chamber (L 39.5 × W 39.5 × H 50.5 cm) 

designed for ecosystem respiration (Reco) measurement (Lindner et al., 2016; Xue et al., 2016a) on ~ 159, 167, 175, 200, 220, 10 

and 240 DOY. Measurements on 240 DOY were only available at PD normal group and RF rice. Four white frames, with 

three filled with healthy plants and one set on bare soil without any plants, were deployed in each PD nutrient group and in 

RF field. They were inserted into the soil at the 10 cm depth before transplanting/sowing to block air leak at the interface 

between the frame and soil surface, and kept in the fields until plants were harvested. Diurnal courses of NEE and Reco per 

square meter were monitored at hourly intervals from sunrise to sunset. Differences of air temperature between inside and 15 

outside the chamber were controlled less than 1oC using ice packs positioned at the back side of the chamber to avoid 

shadow effects of ice packs. Incident PAR inside the transparent chamber was measured with a quantum sensor (LI-190, 

LI-CPR, Lincoln, Nebraska, USA). GPP estimation was derived by, 

ecoRNEEGPP +−=                                           (1)                                                                               

where Reco rates at times when NEE rates were measured were determined from an exponential regression with respect to 20 

chamber air temperature (Tair). A classical hyperbolic light response function was fit to estimate gross primary productivity 

(GPP, sum of NEE and Reco), yielding canopy light use efficiency (LUEcint) defined as the initial slope of the response and an 

estimate of maximum GPP rate (GPPmax) at relatively infinite high PAR level.  

 

2.4 Field measurements of canopy reflectance 25 

Reflectance measurements were carried out with a hand-held multispectral radiometer (Cropscan, MSR4 with 4 wave bands, 

Cropscan Inc., Rochester, MN, USA). Incident radiation was measured with a view-angle of 180o, and that reflected by rice 

canopies was measured with a view angle of 28o. Weekly reflectance measurement arranged around plants sampled for 

canopy gas exchange was repeated six times in each PD nutrient treatment and three times in RF field at solar noon midday 

when sky was clear without clouds. Normalized difference vegetation index (NDVI) was a product of differences of 30 

reflectance in the field of which red (the central band-width of 660.9 nm) and near infrared (the central band-width of 813.2 

nm). Estimations of ground-based NDVI were made on the days when canopy gas exchange measurements, referred to Xue 
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et al. (2016a).  

Spectral reflectance at fine spatial resolution less than 10 cm for the whole PD field and RF field was measured on July 

21 (172 DOY, vegetative stage), July 11 (192 DOY, early reproductive stage), July 25 (206 DOY, middle reproductive stage), 

August 08 (220 DOY, early ripening stage), and August 21 (233 DOY, middle ripening stage) using an unmanned aerial 

vehicle (UAV) system (detailed construction of the UAV system referred to Jeong et al. (2016)). The UAV images were 5 

acquired at approximately local noon ± 30 min (i.e. KST 12:10 to 13:10) when there were clear skies or homogenous cloudy 

skies. The camera exposure was set at its minimum value (0.5 µm s-1) under clear sky conditions and ranged between 1.0 to 

2.0 µm/s under homogenous fine cloudy skies to obtain the best images. When recording UAV images, the multispectral 

camera (mini-MCA6, Tetracam Inc., Chatsworth, California, USA) loaded on board the UAV which detected ground 

reflectance with the wavelength bands of 450, 550, 650, 800, 830, and 880 nm was always positioned vertically to the 10 

ground.  

Pseudo invariant targets (PITs) at three different colors (white, black, and gray) were placed adjacent to PD field prior 

to each UAV flight. At-surface reflectance values of two selected waveband at 800 and 650 nm from those PITs were 

obtained using the other hand-held spectrometer (Cropscan, MSR16 with 16 wave bands). Linear regression correlations 

were made between mini-MCA6 digital values and the reflectance from the MSR16 at each corresponding waveband, with 15 

correlation coefficient ranging from 0.98 to 0.99 (descriptions in detail referred to Ko et al. (2015) and Jeong et al. (2016)). 

Camera measurements were then calibrated based on at-surface measurements by applying each linear regression to the field 

imagery. Evaluation of the radiometric corrected UAV images was carried out by comparisons with measurements of sixteen 

ground point reflectance values which comprised 12 points in paddy fields, 4 points in bright cement, dark asphalt, bare soil, 

and tilled soil. There were close correspondences between reflectance derived from the radiometric corrected UAV images 20 

and those measured at the ground over all UAV flight dates, with correction efficiency (E) up to 0.99 and root mean square 

error (RMSE) ranging between 0.01 and 0.05 (Appendices, Fig. A1). Radiometric calibrated reflectance at red, green, and 

blue bands (450, 550, and 650 nm) on June 21/172 DOY (clear sky) when there had low density vegetation canopies with 

large exposure of water surface were consistently lower than at-surface measurements (Appendices, Fig. A1a), resulting in 

risks of overestimating field NDVI (a product of differences in reflectance of red 650 nm and near infrared 800 nm) thereby 25 

biased estimation of GPPday and LUEcabs. For sake of brevity the radiometric calibrated camera reflectance of red waveband 

on June 21/172 DOY were recalibrated by a linear regression line against at-surface measurements (Appendices, Fig. A1a, 

ρred_ground meas. = 1.761*ρred_UAV, R
2 = 0.76, p < 0.01).  

 

2.5 Measurements of leaf area, nitrogen content and leaf water potential 30 

After conducting leaf and canopy gas exchange measurements, leaf samples were collected to estimate leaf area and nitrogen 

content. Three bundles consisting of fifteen plants from each treatment were harvested on 26, 33, 54, 72 and 86 DAT, and 
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total plant area (leaf and stem) was determined with an LI-3100 leaf area meter (LI-3100, LI-COR, Lincoln, Nebraska, USA). 

Leaves of PD and RF rice grown in the growth chamber were harvested on 33 and 55 DAT. All plant materials were dried at 

~60oC for at least two days before measurements of leaf nitrogen content. Leaf nitrogen content was quantified using a C:N 

analyzer (Model 1500, Carlo Erba Instruments, Milan, Italy). Weekly measurements of LAI were conducted before 220 

DOY using a portable plant canopy analyzer (LI-2000, LI-COR, Lincoln, Nebraska, USA) at the same locations where 5 

at-surface canopy reflectance values were sampled using the Cropscan, and then these were calibrated using those by harvest 

method. LAI measurements on 240 DOY were supplemented referring to Lindner et al. (2016). On the same measuring times 

as leaf gas exchange conducted in August, daily courses of leaf water potential in RF rice were collected with a pressure 

chamber (PMS Instruments, Corvallis, USA). Healthy and well-expanded leaves in plant canopies were enclosed in a plastic 

bag before cutting and rapidly transferred into a pressure chamber.  10 

 

2.6 Data assimilation process 

Assessment of influences of field management practices i.e. nutrient and water availability in crop photosynthetic traits and 

interpretation of the presence of such spatiotemporal fluctuations require development of a data assimilation process, which 

could be capable of linking in situ observations of leaf and canopy photosynthetic traits and vegetation information at field 15 

level. Here, a simple concept model aiming to resolve the objective stated above was developed, up-scaling application of 

the classical light response model of leaf photosynthesis to canopy and field dimensions using hyperspectral reflectance of 

ground surface collected at corresponding scales in the following Eqs 2-8: 

11int bLAIaLUEc +×=                                          (2)
 

22max bLAIaGPP +×=                                          (3) 
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25 

where in Eq. 2, a1 and b1 are regression coefficients for LUEcint-LAI correlation based on plot measurements (Table 1). In Eq. 

3, a2 and b2 are regression coefficients for GPPmax-LAI correlation based on plot measurements (Table 1). In Eq. 4, a3, b3, and 
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c3 are regression coefficients for LAI-NDVI mathematic correlation across all data sets based on plot measurements (Table 

1), which was in line with a 3-year-report in rice in terms of LAI-NDVI trajectory by Jo et al. (2015). In Eq. 5 GPPday is daily 

integrated GPP per pixel, a product of light use efficiency based on incident PAR (LUEcint), maximum GPP rate (GPPmax) and 

half-hourly averaged PARj obtained from the AWS. N is number of observations of incident PAR during daytime. In Eq. 6, 

fAPARmax, NDVImax, NDVImin, and ε are maximum fraction of absorbed photosynthetically active radiation, maximum 5 

NDVI and minimum NDVI of fAPAR-NDVI correlation and its coefficient in green crop canopies, referring to Table 1 and 

Xue et al. (2016a). a4 and b4 in Eq. 7 are regression coefficients for fAPAR-NDVI correlation in senescing canopies (Table 1, 

here refer to the stage after middle ripening stage in rice), derived from Inoue et al. (2008). Light use efficiency based on 

daily canopy light interception per pixel (LUEcabs) in Eq. 8 is a product of GPPday, fAPAR and PARday (daily integrated 

incident PAR). 10 

 

2.7 Geospatial statistic 

Regionalized variable theory takes the differences between pairs of values separated by a certain quantity, usually distance, 

commonly expressed as variance (Vieira et al., 1983). A widely used geostatistical analysis to depict the spatial correlation 

structure of observations in space such as field soil fertility and temperature as well as other ecological processes is 15 

semi-variogram (Pierson and Wight, 1991; Loescher et al., 2014), given by: 

( ) ( ) ( ) ( )[ ]( ) 2

12

1
∑

=
+−=

hN

j
jj hxzxz

hN
hγ

                                   (9) 

Mean
CV sill

sill

γ×
=

2

                                                    (10)
 

where z(xj), j=1, 2, …, n denotes the set of GPPday/LUEcabs data; xj is the vector of spatial coordinates of the jth observation; 

h is the pixel distance of sample values (lag); N(h) is number of pairs of values separated by lag, and γ(h) is semi-variance 20 

for the lag. CVsill is coefficient of variance using the sill and value of the mean for estimation. The semi-variogram simply 

describes how the variance of observations changes with the distance in a given direction or it is averaged over all directions. 

The averaged semi-variance over all directions was used in this research. Most often, semi-variance values increase until 

they reach a maximum approximately equal to the sample variance of the measured variable known as the “sill”. The lag at 

which the sill is reached is known as the “range”. Beyond the range, values of observations are no longer spatially correlated. 25 

Sill values refract magnitude of spatial variability of variables in the field. Several simple functions are commonly used to 

model semi-variogram, which must be proven to be positive definite. An exponential rise to maximum function to 

approximate a spherical model was used to extrapolate the value of the sill, listed below: 

( ) ( )( )hbah ×−−×= exp1γ                                              (11)
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where b is the sill and a is the nugget value.   

 

2.8 Statistical analysis 

Descriptive statistics of the data included computation of the sample mean, maximum (max.), and coefficient of variation 

(CVtraditional). Nonlinear least square method for GPP/PAR curves was executed using R software (R 3.2.3, R Development 5 

Core Team, Austria). The data assimilation that links remote sensing data and ecophysiological measurements and 

geostatistical analyses was processed using IDL 8.0 /ENVI 4.8 software (EXELIS Inc., Rochester, NY, USA). 

 

3 Results 

3.1 Seasonal courses of at-surface NDVI, LAI, LUEcint, and GPPmax  10 

ANOVA analysis for NDVI indicated that NDVI values measured around 170 DOY between the PD normal and high 

nutrient groups were analogous but significantly higher than the low group at 0.05 level (Fig. 2a, p = 0.026). Statistical 

difference at the significant level of 0.05 between the RF and PD low group was not found. No significant discrepancy 

existed between PD normal and high groups over the growing seasons (p > 0.1). Higher NDVI at the PD fertilizer addition 

groups were evident during vegetative stage and early at reproductive stage before 200 DOY (p = 0.06). Such a clear 15 

discrepancy in NDVI between the PD low and fertilization groups and RF rice dismissed after 210 DOY (p = 0.10). NDVI 

values advanced to decline after plants in the PD field arrived at maximum levels around 210 DOY. However, the RF rice 

remained green around 240 DOY with higher LAI by 22.5% when plants in the PD field started senescence (Fig. 2b), which 

results in relatively higher at-surface NDVI that was also captured by field image of NDVI derived from the UAV system. 

LAI in the PD normal nutrient group was similar to those of the high group at the corresponding growth stages (Fig. 2b), 20 

assembling seasonal course of NDVI for the normal/high groups. Enhanced LAI development after 180 DOY by fertilizer 

addition was present, and nitrogen effects persisted until around 210 DOY, which was in line with NDVI development 

among PD nutrient groups. LAI in the RF rice ranged between the PD low and fertilization groups while it remained higher 

values on 240 DOY. Regression analysis for NDVI-LAI relationship in grouped datasets showed a common trajectory across 

PD nutrient groups and RF rice (Fig. 3a, R2 = 0.95, p < 0.001). 25 

A curvilinear response of GPP rate to incident PAR was well fitted by the classical light response model at each 

measuring date, which was previously reported (Lindner et al., 2016) and not shown here. Resulting LUEcint on 160 DOY 

was approx. 0.01 µmol CO2 µmol-1 PARincident crossing the PD nutrient groups and RF rice, and rapidly increased after 180 

DOY (Fig. 2c). Differences in LUEcint among the PD nutrient groups were relatively small less than 20% at corresponding 

dates. Nevertheless, the RF rice presented dramatically high LUEcint as compared to the PD rice from 180 DOY to the end of 30 

the growing season, showing the highest values at 0.11 µmol CO2 µmol-1 and 0.05 µmol CO2 µmol-1 found in RF and PD rice, 

respectively. Generally speaking, PD rice at the fertilization groups had relatively higher GPPmax showing the maximum 
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level of 51.60 µmol CO2 m
-2 s-1 than the low group at 38.90 µmol CO2 m

-2 s-1 (Fig. 2d). Maximum GPPmax in the RF rice was 

analogous to that of PD rice, and remained higher on 240 DOY, which was thought to be ascribed to green LAI (Fig. 2b). 

Similarities in photosynthetic traits in terms of NDVI, LAI, GPPmax and LUEcint between the normal and high nutrient groups 

at the corresponding growth stages were evident. Hence, comparisons in those parameters stated below were referred to the 

low and normal groups.  5 

Relatively low LAI in RF rice during reproductive stage but higher LUEcint than PD at the same growing stage therefore 

resulted in a distinction regarding LAI-LUEcint correlation associated with slope (Fig. 3c, R2 = 0.74, p = 0.02 in RF, R2 = 0.85, 

p < 0.0001 in PD, see Table 1). A common linear regression for LAI-GPPmax correlation that interpreted 88% of variations in 

GPPmax across the PD nutrient groups and RF rice was evident (Fig. 3b, R2 = 0.88, p < 0.0001). Canopy leaf nitrogen content 

(Nm, %) collected in both field and controlled growth chamber were significantly higher in RF rice after 180 DOY (Fig. 4a, b, 10 

p < 0.05). Light use efficiency at leaf level (LUEleaf) was positively correlated to Nm (Fig. 4b, R2 = 0.65, p = 0.0007). It 

implied that improved LUEcint in RF rice observed after 180 DOY could be related to its strengthened capacity of nitrogen 

accumulation in canopy leaves.   

 

3.2 Field mapping of GPPday and LUEcabs  15 

Field maps of GPPday and LUEcabs at principle growth stages (Figs. 5 and 6) clearly showed that seasonal change of 

within-field GPPday at each nutrient group could be quantitatively mapped using three types of colors (yellow, blue and red) 

corresponding to low, medium and high numerical values. Pink pixels and bright red pixels were respectively observed in PD 

and RF rice on measuring date August 08/220 DOY during which time most rice plants proceeded to ripen, showing the 

highest LAI. However, colour distribution in space at specific growth stage within nutrient groups especially in normal and 20 

low groups on July 11/192 DOY and August 21/223 DOY seems to be uneven (Fig. 5b, d). Furthermore, uneven distribution 

in RF rice was intensified as compared with PD rice on corresponding dates. For LUEcabs, appearance of greater spatial 

variability in color distribution was seen at early growth stage in both PD and RF rice (Fig. 6a, e), which seems to be in 

contrast with spatial aspects of GPPday over the growing season. LUEcabs distributions in space over reproductive stage (July 

11/192) seemingly tend to approach homogeneities in either PD nutrient groups or RF rice (Fig. 6b, c, f, g). 25 

Descriptive statistics including Mean, Max., and CVtraditional in GPPday and LUEcabs described their mean, maximum 

values at field scale and within-field variation of mean across the growing season (Table 2). Max. GPPday was differed 

significantly between normal (7.29 g C m-2 d-1) and low (3.78 g C m-2 d-1) nutrient groups after four weeks after 

transplantation, which was clearly indicative in visual display of pixel GPPday as well (Fig. 5a, d). Nevertheless, field mean 

values among the three nutrient groups were close to one another. Enhanced field mean of GPPday in normal groups by 30 

35.63% as compared to low group appeared on June 11/192 DOY, and the large discrepancy persisted until the end of 

growing season. Except the early growth stage three nutrient groups showed similar values in maximum GPPday which 
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reached 12.49 g C m-2 d-1 at normal group around August 08/220 DOY and then declined at senescence stage. Maximum 

GPPday predicated using light use efficiency model in our previous report (Xue et al., 2016a) tended to be higher as compared 

with the one shown here at normal nutrient group, which is thought to be due to model sensitivity to changes in ambient light 

environment.  

Rice plants grown in RF field showed significantly higher mean and maximum GPPday than PD rice at respective 5 

growth stages (Table 2). However, CVtraditional in RF rice was much higher by roughly 2 times than PD normal and low 

nutrient groups after several weeks after transplantation. PD normal nutrient group showed the higher CVtraditional quantified 

on June 21/172 DOY, then followed by high and low groups. Differences in CVtraditional among PD nutrient groups dismissed 

over time, which well aligns with colour display in field map of GPPday in Fig. 5c and d. They imply that although fertilizer 

addition in traditional way can promote increment of field average GPPday, it dramatically strengths field variations of GPPday 10 

at early growth stage in paddy field. As we expect, the change in planting culture from paddy to rainfed could promote 

enhancement of field variations in mean of field GPPday probably due to rising risks in soil water availability when prolonged 

drought events occur.  

LUEcabs appeared to be higher early at the growth stage, rapidly declined after plant growth and development advanced 

to reproductive stage, and gradually decreased to approx. 0.52 and 0.81 g C MJ-1 at senescence stage in PD and RF rice, 15 

respectively (Table 2). RF rice had clearly high values of average LUEcabs as compared to PD by 20.93%, 35.18%, 26.43%, 

and 35.80% on July 11, July 25, August 08 and August 21, correspondingly, apart from June 21 during which time PD and 

RF showed similar LUEcabs around 1.4 g C MJ-1. Enhanced LUEcabs in RF rice over the growing season was likely ascribed to 

higher leaf nitrogen content shown in Fig. 4a.  

Seasonal courses of CVtraditional of LUEcabs among PD nutrient groups exerted a similar tendency, assembling mean of 20 

LUEcabs (Table 2). CVtraditional at normal and high nutrient groups were analogous over time while, appeared to be higher on 

June 21/172 DOY and July 11/192 DOY by approx. 62% and 50% than low nutrient group, respectively. Interestingly, 

CVtraditional at fertilization groups (normal and high groups) exerted markedly greater values by approx. 53% and 30% than 

RF rice at early growth stage (June 21/172 DOY and July 11/192 DOY). Similar to drought impacts in amplifying CV traditional 

in GPPday on August 21/233 DOY in RF rice, amplified CVtraditional in LUEcabs were observed as well. Lower CVtraditional and 25 

similarities in LUEcabs over field space on July 25/206 DOY and August 08/220 DOY well corresponded to field map of 

LUEcabs at corresponding dates, meaning that field mapping in proper ways also could visibly deliver distribution 

information of ecosystem photosynthetic traits in space.    

 

3.3 Semi-variograms of GPPday, LUEcabs, and LAI 30 

Semi-variogram analysis is one of widely used geostatistical parameters to quantitatively evaluate spatial variation. Sill 

values were derived from exponential rise to maximum function which fits values of semi-variogram at each nutrient and/or 
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water treatment (R2 > 0.83, P < 0.01). Values of CVsill in GPPday were significantly and positively correlated to CVtraditional (R
2 

= 0.83, p < 0.001, Fig. 7a), demonstrating that the semi-variogram accurately captured patterns of spatial variability in those 

ecophysiological traits among nutrient treatments and RF rice. Estimates of CVsill among nutrient groups were generally 

close to those of CVtraditional, approaching 1:1 line (Fig. 7a). However, CVtraditional values in RF rice were commonly lower by 

approx. 20% than CVsill at principle growth stages. This occurred because of the traditional method of calculating CV does 5 

not account for spatial correlation in data, implying that spatial heterogeneity in RF field associated with water availability 

and resulting crop growth was greater as compared to PD rice. This was also proven by average CVsill in RF that was greater 

by about 50% than that of PD rice averaged across nutrient groups (Table 3). 

A significantly positive correlation between CVsill and CVtraditional was observed in LUEcabs as well (R2 = 0.89, p < 0.001, 

Fig. 7b). All of CVsill sampled across PD nutrient groups and RF rice resided at right side of 1:1 line, being higher than 10 

CVtraditional but analogous between PD and RF rice, which was different from the significant difference in CVsill of GPPday 

between PD and RF rice shown in Fig. 7a. It was also evident by average CVsill of 11.66 in RF rice that was close to 14.37 of 

PD rice averaged across nutrient groups (Table 3), meaning that spatial variability of LUEcabs in PD rice exerted great 

amplitude that tends to be similar to RF rice. A positively linear correlation between CVsill and CVtraditional was evident in LAI 

(R2 = 0.80, p < 0.001, Fig. 7c). Data points collected over PD nutrient groups oscillated closely the 1:1 line and an exception 15 

was observed in RF rice, which assembles the phenomena observed in CVsill-CVtraditional for GPPday but differs from that for 

LUEcabs. Given the tight correlation between CVsill and sill values, sill instead of CVsill was used in spatial analysis for GPPday 

and LUEcabs as discussed below. 

 

3.4 Spatial patterns of GPPday, LUEcabs, and LAI 20 

Seasonal development in sill values of GPPday exhibited similar tendency across PD nutrient groups and RF rice that 

increased from vegetative stage to early reproductive stage and then declined (Table 3, upper part). Paired t-test showed that 

difference of sill in RF rice was significantly different from PD nutrient groups at the 0.05 level. Nevertheless, significant 

differences were not repeatedly observed among PD nutrient groups. At early growth seasons i.e. June 21/172 DOY 

especially July 11/192 DOY, normal and high nutrient groups had relatively high sill in average by 43.90% as compared to 25 

low nutrient group, implying that fertilizer addition could contribute to spatial variability of GPPday, which conforms to 

differences in CVtraditional (Table 2). As we expect, sill of RF rice measured on August 21/233 DOY increased in contrast to 

observed seasonal tendency of sill that was supposed to decline, due to occurrence of a prolonged drought event from August 

11 to 20 during which leaf water potential around solar noon declined down to -2.0 MPa and severe leaf rolling happened 

(data not shown). Significant impacts by drought on GPPday were observed. Seasonal courses of sill in LAI across PD 30 

nutrient groups and RF rice were similar to those of GPPday (Table 3, middle part). Sills of LAI in RF rice were generally 

higher than PD rice at corresponding growth stages. 
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Sill of LUEcabs showed seasonal trend that was similar to GPPday (Table 3, lower part). The prolonged drought event 

occurring before August 21/223 DOY contributed to spatial variability in RF rice as indicated by greater sill of 0.0142 

compared with 0.0032 on August 08/220 DOY. ANOVA analysis indicated no difference at 0.05 significance level among PD 

three nutrient groups over the growing season (p = 0.67), whereas, mean sill value of 0.4492 on June 21/172 DOY was 

improved by 93.32% for normal and high nutrient groups than 0.03 of low nutrient group, assembling comparisons in sill of 5 

GPPday and field maps shown in Fig. 6a. It implied that fertilizer addition could enhance spatial variability of LUEcabs 

especially early in growing seasons. Interestingly, at early growth stage especially on June 21/172 DOY and July 11/192, PD 

nutrient addition groups had averaged sill higher by approx. 85% as compared to RF rice. RF rice took over high values 

afterwards, meaning that spatial variability of LUEcabs in PD rice amplified by field nutrient application could be even greater 

than RF rice, which totally contrasts with aforementioned GPPday spatial variability between PD and RF rice.   10 

 

3.5 Spatial correlation for GPPday, LUEcabs, and LAI 

LUEcabs was calculated by Eq. 8 consisting of GPPday and fAPR variables, meaning that spatial influences of LUEcabs may 

yield impacts on GPPday. Sill values or CVsill for GPPday and LUEcabs were not significantly correlated to one another when all 

data sets were grouped across PD nutrient groups and RF rice over growing seasons (R2 < 0.14, p > 0.01). Instead, such 15 

significantly positive correlations were found for sillGPPday-sillLAI  in PD nutrient groups (Fig. 7d, R2 = 0.36, p = 0.012) and in 

RF rice (Fig. 7d, R2 = 0.85, p = 0.015), suggesting that the primary factor that mediates GPPday spatial variation in PD 

nutrient groups especially in RF rice was LAI development.  

 

3.6 Imply ecological implications of canopy leaf physiology  20 

Ecological implications of canopy leaf physiology i.e. LUEcabs in monitoring of spatial variation and strength of GPPday for 

the same plant function type (PD and RF rice) were analyzed using scenario analysis. It applied LUEcabs of PD rice on 

August 08/220 DOY in estimation of RF rice GPPday at the same date, yielding comparisons in field map of GPPday (Fig. 8a, 

b) and quantitative assessment (Fig. 8c). Field map of predicted GPPday using PD-LUEcabs indicated blue as prevailing color 

as compared to prevailing red color in field map of initial estimation, meaning significant underestimations of GPPday 25 

especially at the sites where showed high LAI (Fig. 8c). It suggested that take delicate variations in canopy leaf physiology 

among the same plant function type across various habitat conditions into account seems to be vital.        

 

4 Discussion 

A series of successive effects regarding rice growth and environment from leaf to ecosystem perspectives has been made in 30 

our research group, aiming to unveil physiological mechanisms responsible for optimal carbon gain and water use at leaf 

level as well as their plastic acclimation to changing ambient environment (Xue et al., 2016b and c), disentangle roles of 
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canopy structure and function in determination of canopy carbon gain at individual organism subject to different field 

management methods and anthropogenic interventions (Lindner et al., 2016; Xue et al., 2016a), supplement understanding of 

climate change, phenology, and rice ecosystem photosynthetic productivity (Xue et al., 2017), and discuss ecological 

implications of life history of rice crop in controlling regional carbon fluxes at agriculture landscape (Lindner et al., 2015). 

Great fluctuations of ecosystem photosynthetic productivity across different geographic sites existed. However, the 5 

fluctuation was not statistically correlated to nitrogen application rates which do significantly contribute to rice growth at 

individual level. It is thought to be due to various factors. At least, one of them could be ascribed to inter- and intra-field 

variations of ecosystem photosynthetic productivity, indicating that research specified into filed/microsite should be 

implemented to gain new insights into how water and nitrogen availability affect photosynthetic productivity at individual 

and microsite scales. 10 

 

4.1 Feasible application of UAV system to capture spatiotemporal variations of GPPday 

Applications of close-range remote sensing in studies of vegetation dynamics regarding plant growth and phenology have 

received increasingly concern partially due to pixel-to-pixel detection at small scale that eliminates the averaging involved in 

larger pixels of satellite products. It compensates for regional observation of satellite remote sensing systems. UAV-based 15 

applications in agronomical studies has been tested, and evaluating spatial variability of soil nitrogen content in winter wheat 

field (Cao et al., 2012), detecting canopy nitrogen status in irrigated maize (Bausch and Khosla, 2010), and mapping cereal 

yield using field vegetation indices (VIs, Fisher et al., 2009; Swain et al., 2010; Tubaña et al., 2012; Zhang and Kovacs, 

2012), rice growth and yield included (Ko et al., 2015). Recent attempts were made to apply narrow-band multispectral 

imagery derived at plot level in monitoring of whole field carbon content of lucerne plants (Wehrhan et al., 2016). 20 

Furthermore, an applicable crop information delivery system tested in rice ecosystems by Ko et al. (2015) and Jeong et al. 

(2016), which takes several valuable VIs at high spatial resolution into account, well capture delicate changes in crop growth 

and yield among pixels. In this research, diagnostic information derived from images in high spatial resolution could be well 

linked to canopy biophysical traits in PD and RF rice, and draw seasonally zonal maps of GPPday and LUEcabs (Fig. 5 and 6), 

and then assist in evaluation of spatial variation of those functional traits.   25 

Practical application of the UAV technique in the field requires a number of procedural steps, including image 

pre-processing, image interpretation and data extraction. And integration of these data with agronomic data into expert 

systems still needs to be developed and improved before end products of remote sensing applications are taken into account 

by decision-making processes (Zhang and Kovacs, 2012). An empirical calibration method adopting spectral reflectance 

from three types of PITs was applied to process radiometric correction, calibrate initially accessible UAV images on each 30 

measuring date. Although a close correspondence was commonly found between calibrated UAV reflectance and at-surface 

measurements at middle and late growing seasons, the empirical calibration tended to underestimate ground reflectance 

Biogeosciences Discuss., doi:10.5194/bg-2016-492, 2016
Manuscript under review for journal Biogeosciences
Published: 18 November 2016
c© Author(s) 2016. CC-BY 3.0 License.



 15 

especially in red reflectance at the early growth stage probably due to water scattering effects. UAV flight schedule always 

arranged at solar noon may not be the best option to obtain a close correspondence between camera reflectance and ground 

surface measurements at early growth stage. Another empirical regression linking calibrated UAV reflectance and plot 

measurements was applied instead of considering complex mechanisms of light scattering in area of physical category. The 

methods used to recalibrate UAV images on June 21/172 DOY may yield biased estimation of field reflectance due to limited 5 

number of ground reflectance swatches that were deployed at limited space. Leaves of plants grown at fertilization addition 

conditions had enhanced nitrogen content at early growth stage, which directly contributes to greater LUEcabs (Sinclair and 

Horie, 1989; Xue et al., 2017). Whereas, LUEcabs at normal and high nutrient groups where plants accumulated more 

nitrogen in leaves on June 21 (Fig. 4a) calibrated on the basis of recalibrated UAV reflectance were averagely higher as 

compared to low nutrient group (Table 2), which implies the pragmatic feasibility of adopting recalibration routine to acquire 10 

correct UAV products. 

The data assimilation concept that integrates traditional physiology approaches at plot level and close-range remote 

sensing information requires reliable establishments regarding correlations between ground surface measurements of VIs and 

LAI, LAI and LUEcint and GPPmax. Reliable relationships between those biophysical traits were inferred across PD nutrient 

groups and RF rice (Fig. 3). Nevertheless, there are limited data sets for LAI-LUEcint correlation in RF rice mainly due to 15 

labor deficits to intensively carry out measurements of diurnal courses of leaf and canopy gas exchange and measurements of 

other plant parameters in PD nutrient groups and RF rice. Supplementary data sets in terms of LAI-LUEcint correlation in RF 

rice as well as other main cops will be surely conducted when field conditions together with research fund are granted in near 

future.    

 20 

4.2 Spatial variability of photosynthetic trait in RF field seems to be not always greater than PD field 

There are continuously increasing water and food demands in rice as world population breaks through into a new record. 

Expand rice planting area over different geographic sites particularly in those regions lack of irrigation water resource and/or 

fundamental facility to flood fields and high possibility of occurrence of water scarcity in coming decades in flooded regions 

have triggered increasing concerns associated with how water availability in RF field could influence spatiotemporal 25 

variations of ecosystem photosynthetic productivity as compared to PD field (Serraj et al., 2008). Spatial variations of 

GPPday and LAI in RF field were amplified compared to PD nutrient groups at corresponding growth stages (Table 3). 

However, spatial variation of LUEcabs at early growth stage (June 21/172 DOY and July 11/192 DOY) at PD fertilization 

groups was significantly greater than RF at the same time period, implying that spatial variability of photosynthetic trait in 

RF field does not seem to be always higher than PD field depending on nutrient availability. We also found that nutrient 30 

addition at early growth stage could amplify spatial heterogeneity of GPPday and LUEcabs in PD field while, such nutritional 

effects dismissed at reproductive and ripening stages.      
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4.3 Imply ecological implications of field niche in spatially hierarchical remote sensing network   

Better interpret ecosystem carbon dynamics in response to different field management methods and anthropogenic 

interventions via their influences on plant structure and physiology emphasizes the importance of in situ plot data. While plot 

data provide our most detailed information on rice carbon and water gas exchange, applying this understanding to broader 5 

spatial and temporal domains requires scaling approaches. As aforementioned before, field niche which resides between in 

situ plot and regional dimension is supposed to be a key chain of spatially hierarchical remote sensing network (Masek et al., 

2015; Pause et al., 2016). Applications of the data fusion at microsite/field scale that combine observations of in situ canopy 

structure and function with field crop information derived from the UAV system well capture critical growth information of 

rice crop in space.    10 

Spatial variations in GPPday over PD nutrient groups and RF rice tend to be primarily mediated by LAI. Canopy 

structure i.e. LAI is the main biotic factor in rice ecosystems that could yield large impacts in seasonal course of ecosystem 

photosynthetic productivity, which is in line with previous reports (Xue et al., 2017). Nevertheless, scenario analysis in Fig. 

8 documented markedly underestimations of GPPday in RF rice at the beginning of ripening stage when apply LUEcabs of PD 

rice in spatial monitoring of GPPday in RF field. Spatial fluctuations of daily GPP at ripening stage when canopy LAI 15 

maximizes could directly contribute to variations of overall growth season photosynthetic productivity in rice (Xue et al., 

2017). Furthermore, enhanced LUEcabs in RF rice is suggested to be ascribed to improved nitrogen accumulation capacity 

after 180 DOY (Fig. 4), or due to phosphorus uptake efficiency (Kato et al., 2016) that was not quantified here. Changes in 

leaf nitrogen allocation within leaves that relate to photosynthetic activity of individual leaves may also have important 

implications, i.e. improve plant biomass production (Karaba et al., 2007; Wang et al., 2014), visa verse, may not affect 20 

biomass (Tanaka et al., 2013; Dow and Bergmann, 2014), and must be investigated along with canopy structure. It includes 

important information that consider variations in canopy leaf physiology for the same plant function type across various 

habitat conditions essentially contributes to better monitoring of per-field photosynthetic productivity and biological 

interpretation of its spatial patterns using remote sensing technique.  

 25 

5 Conclusions 

As far as we know, this is the first work aiming to assess influences of nitrogen and water availability in spatial and temporal 

patterns of the rice ecosystem photosynthetic productivity at micro scale. Quantitatively abundant data at high quality 

derived from the close-range remote sensing system refract crop growth information linked to biotic and abiotic factors at 

critical growth stages. Application of the data assimilation concept indicated that fertilizer addition in the PD rice field 30 

enhanced spatial variations of GPPday and LAI as well as LUEcabs at early growth stage. Change planting culture from 

flooded to rainfed conditions contributed to greater spatial heterogeneity of those traits. Nevertheless, nutritional effects in 
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the PD rice at early growth stage made PD field possess even greater spatial heterogeneity in LUEcabs. Physiological basis 

related to LUEcabs in the RF rice highlighted that incorporate spatial variations of canopy leaf physiology for the same plant 

function type into field gas exchange modelling campaigns could substantially improve evaluation of ecosystem 

photosynthetic production at regional/continental scales.  

 5 
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Figure and Table 

 

Figure 1. Illustration of study site where field data collection campaign that was carried out in 2013, Gwangju, S. Korea. 

Yellow square and white circles represent sites of paddy fields and those marked for measurements of ground reflectance by 5 

one handheld MSR to validate UAV imagery. T1: paddy rice under low nutrient condition (no supplementary nitrogen 

applied); T2: PD rice under high nutrient condition (180 kg N ha-1); T3: PD rice under normal nutrient condition (115 kg N 

ha-1), and T4: RF rice (115 kg N ha-1). PD: paddy; RF: rainfed. 
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Figure 2. Seasonal courses of (a) normalized difference vegetation index (NDVI), (b) leaf area index (LAI), (c) canopy light 

use efficiency based on incident PAR (LUEcint), and (d) maximum gross primary production (GPPmax) measured at plot level 

in PD low, normal and high nutrient groups, and in RF rice. Mean ± SD, n= 3 to 6. DOY: day of year. PD: paddy; RF: 5 

rainfed. 
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Figure 3. Correlations between (a) normalized difference vegetation index (NDVI) and leaf area index (LAI), (b) maximum 

gross primary production (GPPmax) and LAI, and (c) canopy light use efficiency (LUEcan) and LAI across PD low, normal 

and high nutrient groups, and in RF rice. Mean ± SD, n= 3 to 6. PD: paddy; RF: rainfed. 5 
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Figure 4. Seasonal development of leaf nitrogen content (Nm) in (a) PD low, normal and high nutrient groups, and in RF rice 

in the field, and (b) in PD and RF rice grown in controlled growth chamber. (c) Correlation between leaf light use efficiency 

(LUEleaf) and Nm crossing PD and RF rice. Mean ± SD, n= 3 to 6. DOY: day of year. DAT: day after transplanting. PD: 5 

paddy; RF: rainfed. 
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Figure 5. Filed mapping of ecosystem gross primary production (GPP) in PD rice and RF rice at principle growth stags: 

vegetative stage (June 21/172), middle reproductive stage (July 11/192), early ripening stage (August 08/220), and middle 

ripening stage (August 21/233). Date ere expressed as MM DD/DOY. DOY: day of year; PD: paddy; RF: rainfed. 5 
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Figure 6. Filed mapping of canopy light use efficiency (LUEcabs) in PD rice and RF rice at principle growth stags: vegetative 

stage (June 21/172), middle reproductive stage (July 11/192), early ripening stage (August 08/220), and middle ripening 

stage (August 21/233). Date ere expressed as MM DD/DOY. DOY: day of year; PD: paddy; RF: rainfed. 5 
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Figure 7. Coefficient of variation calculated by dividing the standard deviation by the mean (CVtraditional) versus coefficient of 

variation calculated using the semi-variogram sill (CVsill) across PD nutrient groups and RF rice for variables (a) GPPday, (b) 

LUEcabs, and (c) LAI. RF: rainfed; PD: paddy. 5 
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Figure 8. Evaluate potential effects of light use efficiency (LUEcint) in ecosystem photosynthetic productivity (GPPday) in 

field RF rice at ripening stage. GPPday estimation of RF rice was carried out by adopting LUEcint value of PD rice at ripening 

stage. GPPday estimation using (a) observed LUEcint in RF rice, (b) using LUEcint of PD rice (GPPday_LUEcint_PD), and (c) 5 

quantitative comparisons between GPPday and GPPday_LUEcint_PD as referred to leaf area index (LAI). PD: paddy; RF: 

rainfed. 
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Figure A1. Validation of calibrated UAV-based reflectance by measurements of group point reflectance set up in paddy 

fields across the whole growing season (a-e) and in other land covers obtained on 172, 192, and 220 DOY including bright 

cement, dark asphalt, bare soil, and tilled soil (f). Dash line in each subplot shows 1:1 ratio. Recalibration for UAV-based 5 

reflectance in red waveband was conducted on June 21/172 DOY, shown in subplot a (coarse dash line). DOY: day of year.   
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Table 1. Values of coefficients for Eqs 3-7. PD: paddy rice; RF: rainfed rice. 

Eqs. Coef. Values Coef. Values Coef. Values Coef. Values 

a2_PD
 

0.0074
 

b2_PD
 

0.0107
 

    
Eq. 2 

a2_RF
 

0.0211
 

b2_RF
 

0.0070
 

    

Eq. 3 a3 8.571 b3 4.081     

Eq. 4 a1 7.398
 

b1 -1.752
 

c1
 

0.452    

Eq. 6 fPARmax 0.95 NDVImax 0.94 NDVImin 0.11 ε 0.6 

Eq. 7 a4 0.169 b4 0.765     

* Values of coefficients for Eq. 7 were derived from reports by Inoue et al. (2008). 
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Table 2. Descriptive statistics of ecosystem photosynthetic productivity (GPPday, g C m-2 d-1) and light use efficiency 

(LUEcabs, g C MJ-1) at each nutrient treatment in PD rice and at RF rice. Measuring date (MM DD/DOY). DOY: day of year. 

PD: paddy; RF: rainfed. 

GPPday LUEcabs 

 Low Normal High Rainfed Low Normal High Rainfed 

June 21 /172 DOY 

Mean 2.32 2.56 2.33 4.53 1.16 1.67 1.43 1.3 

Max. 3.78 7.29 3.51 10.57 ~3.50 ~3.50 ~3.50 3.18 

CVtraditional 2.16% 14.06% 5.15% 25.81% 17.24% 47.90% 48.95% 22.00% 

July 11 /192 DOY 

Mean 6.16 9.57 8.35 10.99 0.68 0.62 0.73 0.86 

Max. 11.21 12.73 11.97 16.93 1.72 2.75 2.86 2.35 

CVtraditional 21.36% 14.52% 20.37% 26.32% 4.92% 11.29% 9.20% 7.09% 

July 25 /206 DOY 

Mean 7.93 9.74 9.45 14.28 0.7 0.68 0.68 1.08 

Max. 10.97 11 11.04 17.15 0.87 1.32 1.06 1.79 

CVtraditional 13.55% 9.22% 10.12% 16.89% 4.38% 8.82% 4.94% 4.81% 

August 08 /220 DOY 

Mean 9.56 10.85 10.57 15.41 0.66 0.62 0.63 0.87 

Max. 12.28 12.49 12.41 18.11 1.58 1.42 1.57 0.95 

CVtraditional 8.89% 7.77% 8.77% 15.36% 4.54% 4.19% 4.12% 4.65% 

August 21 /233 DOY 

Mean 7.13 7.69 7.45 12.14 0.49 0.52 0.52 0.81 

Max. 9.94 10.73 10.22 15.91 0.66 0.71 0.68 1.05 

CVtraditional 9.23% 8.49% 8.88% 19.91% 6.93% 7.69% 6.73% 19.75% 
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Table 3. Sill values of semi-variograms and CVsill for GPPday (g C m-2 d-1, upper part), LAI (m2 m-2, middle part), and 

LUEcabs (g C MJ-1, lower part) at PD rice subject to low, normal and high nutrient gradients and at RF rice over the growing 

seasons: vegetative stage (June 21), reproductive stage (July 11 and 25), ripening stage (August 08 and 21). DOY: day of 

year. PD: paddy; RF: rainfed. 5 

Growth stage Date/DOY Low Normal High Rainfed 

GPPday  Sill CVsill Sill CVsill Sill CVsill Sill CVsill 

Vegetative June 21/172 0.01 2.86% 0.09 16.57% 0.01 6.10% 0.98 30.91% 

July 11/192 0.45 15.40% 0.78 13.05% 0.79 15.05% 6.15 31.91% Reproductive 

July 25/206 0.37 10.85% 0.31 8.08% 0.37 9.10% 6.03 24.32% 

August 08/220 0.42 9.59% 0.25 6.52% 0.43 8.77% 2.57 14.71% Ripening 

August 21/233 0.20 8.87% 0.23 8.82% 0.22 8.90% 4.77 25.44% 

LAI          

Vegetative June 21/172 0.0015 14.19% 0.0219 42.48% 0.0026 18.40% 0.1079 43.75% 

July 11/192 0.1111 20.81% 0.2869 19.96% 0.2076 18.91% 0.6915 37.36% Reproductive 

July 25/206 0.1866 14.68% 0.2924 14.76% 0.1535 10.71% 0.6127 22.07% 

August 08/220 0.4306 23.99% 0.1148 10.10% 0.1174 10.37% 0.4050 18.83% Ripening 

August 21/233 0.0910 12.02% 0.2015 16.72% 0.0879 11.14% 0.6622 27.59% 

LUEcabs          

Vegetative June 21/172 0.0302 21.19% 0.5478 62.68% 0.3506 58.56% 0.0633 27.37% 

July 11/192 0.0190 28.67% 0.0065 18.39% 0.0073 16.55% 0.0041 10.53% Reproductive 

July 25/206 0.0008 5.71% 0.0031 11.58% 0.0011 6.90% 0.0070 10.96% 

August 08/220 0.0011 7.11% 0.0010 7.21% 0.0007 5.94% 0.0032 9.20% Ripening 

August 21/233 0.0009 8.66% 0.0024 13.32% 0.0008 7.69% 0.0142 20.81% 
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